
Petaflops-systems Operations
Working Review

Thomas Sterling
California Institute of Technology
NASA Jet Propulsion Laboratory

August 13, 1998



POWR Workshop Overview

• Petaflops initiative & context
• Objectives
• Charter & Guidelines
• 3 Pflops system classes

– COTS clusters
– MPP system architecture
– Hybrid-technology custom architecture

• Specific group results

• Summary findings
• Open issues
• Recommendations
• Conclusions





Comparsion to Present
Technology

TODAY Pflops 
IMPROVEMENT

PERFORMANCE 1 Teraflops 1000 Teraflops       X
1000

POWER 2 Mflops/watt1000 Mflops/watt       X 500

COST $250/Mflops $0.25/Mflops       X 1000

EFFICIENCY 10% 50%             X 5

FLOORSPACE 1600 sq ft/Tflop 1 sq ft/Tflop
X 1600



PetaFLOPS Workshops

Approvals

Need

 Feasibility

Program Plans

PetaFLOPS I
January ‘94

Summer Study
August ‘95

Software 
Workshop
June ‘96

PetaFLOPS II
February ‘99

P
ro

g
re

ss
P

ro
g

re
ss

TimeTime

Conceptual
Approach

Scope

Architecture
Workshop
April ‘96

Petaflops Frontier 2
October ‘96

Algorithms
Workshop
April ‘97

Layered SW
Workshop

January ‘97Point Design Studies

PetaFlops-systems Operations
Working Review

June ‘98



Workshop series... background:
Community & Sponsoring

Agencies

Sponsoring Agencies
– DOE
– NASA
– NSF
– NSA
– DARPA
– BMDO

t

Private
sector

Academic

Federal

National
Laboratories



Previous Accomplishments
• Recognizing the issue

– Important applications identified requiring Pflops machines
– Industry is considering 50-100 Tflops systems

– Interests by US and other governments

• Hardware/Architecture Implementation approaches
– Driving factors (e.g. latency, parallelism, bandwidth)
– Architecture archetypes

• through NSF Point Design studies
• distributed clusters of cots systems
• new MPP structures of commercial components
• innovative architectures incorporating advanced technologies
• special purpose devices

• Software and algorithm requirements



Uncompleted Tasks

• Programming models
• Operating systems
• Scaling models for applications and algorithms
• Definitive Analysis of Limits of Moore’s Law for

CMOS
• Compelling Applications with Watertight Justification

of Need for Petaflops and Analysis of Configuration
Parameters

• Characterization and analysis of architecture
efficiency under real-world workloads



POWR Goals

• Fulfill the promise of the Petaflops Initiative
• Provide the basis for future sponsored research

programs
• Answer the questions of What and How

– destinations and the paths

• Ground work for final culminating community forum
– 2nd Workshop on Enabling Technologies for Peta(fl)ops Computing
– February, 1999



POWR Objectives
• Consider range of alternative system approaches

– COTS Clusters
• commercial only node and system architecture

– MPPs
• mostly commercial parts with custom system architecture

– HTMT
• custom technologies and parts with custom node and system

architecture

• Description of systems and their comprising functional elements
• Identification of unresolved issues
• Definition of tasks to be performed
• Develop a succinct report for Pflops-2 workshop and research

program managers



Approach

• Vertically integrated systems approach
– keystroke to instruction-issue
– applications algorithms, semantics, compile time, runtime,

architecture support

• Pursue three most promising systems concepts
• Convene working groups for each system class
• Emphasize performance driven factors
• Block diagram for each system
• Functional and interface description
• Open issues



The High Cs to crossing  to
Petaflops Computing

• Capability
– Computation rate
– Capacity of storage

• Cost
– Component count

– Connection complexity

• Consumption of power
• Concurrency
• Cycles of latency
• Customers
• Confidence



Strategic Questions

• What is the performance responsibility for :
– hardware architecture
– runtime software
– compiler analysis
– algorithm & language

• What performance related information needs to flow
between successive system levels?



Invited Plenary Talks

• Keynote Address: “From Here to Petaflops”, B. Smith
• “MPP Architecture for Petaflops”, T. Agarwala
• “The First Steps towards Petaflops”, P.H. Smith
• “Impressions of Accomplishments to Date”, P. Messina
• “HTMT Architecture for Petaflops”. T. Sterling
• “PIM Technology and Architecture”, P. Kogge
• “Challenges and Tasks to Achieving Petaflops”, V. Kumar, D. Keyes,

J. Torrellas, J. McGraw
• “Hierarchical Granularity MPP Architecture”, J. Fortes
• “Making COTS Petaflops Work”, M. Warren
• “MPP Emulation Requirements for Algorithm Design”, P. Woodward



MPP Petaflops System

• COTS chips and industry standard interfaces
• Custom glue-logic ASICs and SAN
• New systems architecture
• Distributed shared memory and cache based

latency management

• Algorithm/application
methodologies

• Specialized compile time and
runtime software



Summary of MPP

• processor: 3 GHz, 10 Gflops
• # processors: 100,000
• memory: 32 Tbytes, DRAM, 40ns access time local
• interconnect: frames switched, 128 Gbps/channel
• secondary storage: 1 Pbyte, 1 ms access time
• distributed shared memory
• latency management: cache coherence protocol



COTS Clustered Petaflops
System

• NO specialized hardware
• Leverages mass market economy of

scale
• Distributed memory model with

message passing
• Incorporates desktop/server mainstream

component systems
• Integrated by means of COTS

networking technology
• Augmented by new application

algorithm methodologies and system
software



Emergence of Beowulf Clusters



Summary of COTS Cluster

• processor: 3 GHz, 10 Gflops
• # processors: 100,000
• memory: 32 Tbytes, DRAM, 40ns access time
• interconnect: degree 12 n-cube, 20 Gbps/channel
• secondary storage: 1 Pbyte, 1 ms access time
• distributed memory, 3 level cache, 1 level DRAM
• latency management: software



Hybrid Technology Petaflops
System

• New device technologies
• New component designs
• New subsystem architecture
• New system architecture
• New latency management

paradigm and mechanisms
• New algorithms/applications
• New compile time and runtime

software

 Li qui d N2  Regi me    

          

OPTICAL STORAGE

INTERCONNECT

Buffer Buffer Buffer

DRAM DRAM DRAM

SRAM SRAM SRAM

OPTICAL PACKET SWITCH

Superconducting Section
100 GHz Processors

CRAMn CRAMn-1CRAM0

P0 Pn Pn-1

Liquid N2 Region



20102001

e-beam lithgraphy

1998

(SIA Forecast)

2004 2007

1 GHz

10 GHz

100MHz

100 GHz

1 THz

1.5 um 

0.4 um 

0.25 um 

0.13 um 

0.07 um 

 high-Tc (65-77 K)

??

 low-Tc (4-5 K)

optical lithgraphy

Year

0.8 um 

0.25 um 

3.5 um 

??

Superconductor RSFQ
logic provides X100
Performance

Basic 
Silicon 
Macro

Memory
Stack

Sense Amps

Node Logic

Sense Amps

Memory 
Stack

Sense Amps

Sense Amps

D
ec

o
d

e

Memory 
Stack

Sense Amps

Sense Amps

Memory 
Stack

Sense Amps

Sense Amps

Processor in Memory (PIM) High
Memory Bandwidth and Low Power

Data Vortex Optical
Communication.
Very High Bi-section
Bandwidth with Low
Latency

Holographic Storage High
Capacity with Low Power
at Moderate speeds

Complementing Technologies Yield Superior
Power/Price/Performance

PIN

PIN

input 2
west

input 1
north

control out
north

control in
south

output 1
east

output 2
south

WDM tap

PIN

e lect ronic

lo gic

2x2 switch

WDM tap

header

WDM/ TDM

payload

10Gbit x 16λs

1 Gbit

header

computer
processor

WDM

to network

EO modulators

electronic
lines

optical fiber

Single
Chip



DIVA PIM
Smart
Memory for
Irregular Data
Structures
and Dynamic
Databases

Major Subsystems

PIM Internal Interconnect

Node

NodeNode

NodeCo-Processor

Parallel Bus Interface

Serial Interface

Se rial Int erface

Serial Interface

Se rial Int erface

DIVA PIM Node Block Diagram

Word-wide
Regist er
bank

Memory Stack
of Sub-Arrays

Row AccumulatorRow Accumulator

Row Buffer Bank

Word-wide
Processo r

Internal Interconnect

Processor in Memory
• Merges memory & logic on
single chip

• Exploits high internal
memory bandwidth

• Enables row-wide in-place
memory operations

• Reduces memory access
latencies

• Significant power reduction
• Efficient fine grain parallel
processing DIVA PIM Project

• DARPA sponsored $12.2M USC ISI prime with
Caltech ($2.4M over 4 years), Notre Dame, U
of Del

• Greatly accelerate scientific computing of
irregular data structures and commercial
dynamic databases

• 0.25 µm 256 Mbit part delivered 4Qtr 00
• 4 processor/memory nodes
• Key innovation of Multithreaded execution for
high efficiency through latency management

• Active message driven object oriented
computation

• Direct PIM to PIM interaction without host
processor intervention



Summary of HTMT

• processor: 150 GHz, 600 Gflops
• # processors: 2048
• memory: 16 Tbytes PIM-DRAM, 80ns access time
• interconnect: Data Vortex, 500 Gbps/channel, > 10

Pbps bi-section bw
• 3/2 storage: 1 Pbyte, 10 us access time
• shared memory, 4 level hierarchy
• latency management: multithreaded with percolation



COTS Cluster Breakout Group
David H. Bailey *
James Bieda
Remy Evard
Robert Clay
Al Geist
Carl Kesselman
David E. Keyes

Andrew Lunsdaine
James R. McGraw
Piyush Mehrotra
Daniel Savarese
Bob Voigt
Michael S. Warren



COTS Cluster Group Findings
Working system model:
• 12,500 nodes.
• Individual nodes: 8-proc. shared memory COTS

system.
• Individual processors: 3 GHz, 10 Gflop/s, possibly a

multi-CPU design.
• Main memory bandwidth per processor: 10 Mbyte/s.
• Main memory: 20 Gbyte memory per node, 250

Tbyte total.
• Disk space: 200 Gbyte per node, 2.5 Pbyte total.
• Archival storage provided on each node.



Interconnection Network
• 4-deep hierarchy of 16x16 crossbar switches, with

more switches at higher levels.
• Optical WDM fiber links, 20 Gbyte/s bandwidth per

channel.
• Direct node-to-node communication -- no transmittal

through other nodes.
• Thousands of extra ports in the network could be

used for external I/O.
• Node-to-node latency: 1 us hardware, 11 us with

software.
• Global synchronization or reduction time: 300 us with

software.



Front End System

Multi-node front end system with full OS, compilers, etc.
• Allocates nodes, initiates and terminates jobs.
• Assumes only one user job per node -- i.e. space sharing.
• Manages batch queues and system resources.
• Monitors and manages the network and cluster nodes.
• Provides cluster configuration information to nodes.
• Designates nodes up or down.
• Maps spare nodes to replace failed ones.
• Updates runtime software on cluster nodes.
• Provides user interface to cluster nodes for running parallel

commands, compiling, debugging, loading input data, handling
output data.



Cluster Node System Software
• Stripped-down Linux (or the equivalent).
• Initiates and terminates the application on the node.
• Handles local disk and external network I/O.
• Supports virtual memory.
• Supports performance monitoring.
• Supports shared memory parallel execution.
• Supports fault detection and mitigation.



Programmer’s Responsibilities
• Expose enormous levels of parallelism and achieve

high data locality.
• Explicitly handle parallelism, tasks, decomposing

data, etc.
• Programming model:

– Within nodes: message passing (i.e. MPI) or shared memory
threads (i.e. OpenMP).

– Between nodes: message passing (i.e. MPI).

• Checkpointing -- user will periodically write required
restart data to local disk.



Critical System Software
• A cluster node Unix-based OS (i.e. Linux or the like),

scalable to 12,500+ nodes.
• Fortran-90, C and C++ compilers, generating

maximum performance object code, usable under the
Linux OS.

• An efficient implementation of MPI, scalable to
12,500+ nodes.

• System management and job management tools,
usable for systems of this size.



System Software Research Tasks

• Can a stripped down Linux-like operating system be designed that is
scalable to 12,500+ nodes?

• Can vendor compilers be utilized in a Linux node environment?
• If not, can high-performance Linux-compatible compilers be produced

by third party vendors, keyed to needs of scientific computing?
• Can MPI be scaled to 12,500+ nodes?
• Can system management and batch submission (i.e. PBS or LSF) tools

be scaled to 12,500+ nodes?
• Can an effective performance management tool be produced for

systems with 12,500+ nodes?
• Can an effective debugger be produced for systems with 12,500+

nodes?  Can the debugger being specified by the Parallel Tools
consortium be adapted for these systems?



Algorithm/Application Research
Tasks

• Is there a sufficiently large class of petaflops-class
applications that possess
– 10^7 to 10^8 concurrency at virtually all steps of the computation?
– 95+% cache locality and 99+% node locality?

• Are there hierarchical and latency tolerant variants of
key algorithms?

In general, what are reliable estimates of achieved
performance for various petaflops applications on the
proposed system?



MPP Breakout Group

Rudolf
Eigenmann
Jose Fortes
David Frye
Kent Koeninger
Vipin Kumar
John May
Paul Messina
Merrell Patrick
Paul Smith
Rick Stevens *
Valerie Taylor
Josep Torrellas
Paul Woodward



Challenges to Pflops MPP

• Global user shared name space
– sufficient address size, with user id
– cache consistency model with hardware support

• Global process id
• Virtual memory and processor

– protection/reliability
– translation buffer consistency
– efficient address mapping

• Intrinsic latency tolerance thru advanced caching
• Dynamic load balancing
• Leverage industry investment in COTS devices



MPP Strategy

• Custom design of performance critical system
architecture elements
– high bandwidth/low latency interconnect network
– efficient mechanisms for cache management & global coordination

• Exploit COTS where ever possible
• Devise hierarchical system structures for variable

latency and graceful locality degradation
• Dynamic resource management
• Keep costs to near cluster levels
• Automatic parallelization/data partitioning/task

allocation



MPP Train-Wreck
• Objectives are in conflict

– global latency tolerance not supported by COTS processors
– TLB consistency management does not scale
– Cost advantage of COTS lost to custom design requirements
– User management of locality still likely

• Language limitations
– Message-passing imposes parallelism granularity barrier
– Data structure driven parallelim unavailable due to overhead of

interpreting

• System-wide operating system scalability model
elusive

• Fine-grain runtime system a research topic
• Conventional cache policies in conflict with memory

access patterns of many applications



Recommendations

• Begin scalable O/S design now
• Detailed applications scaling studies essential to

determining global requirements
• Some innovative technologies crucial to meeting

capacity requirements
• New execution paradigm/programming model

– experimental API, compiler, runtime based on new metrics

• PIM may be essential for memory bandwidth
• Percolation or other pro-active latency management
• Establish meaningful real-world metrics



HTMT Breakout Group

Larry Bergman *
Nikos Chrisochoides
Vincent Freeh
Guang R. Gao
Peter Kogge
Phil Merkey
John Van Rosendale
John Salmon
Burton Smith
Thomas Sterling



HTMT Discussion Topics

• Synchronization that the runtime handles
• Scheduling (DRAM/SRAM, SRAM/CNET)
• Runtime to thread percolation interface
• API: How should users view machine?
• Performance instrumentation & debug tools



Multilevel Multithreaded Execution Model

• Extend latency hiding of multithreading
• Hierarchy of logical threads

- Delineates threads and thread ensembles

- Action sequences, state, and precedence constraints

• Fine grain single cycle thread switching
- Processor level, hides pipeline and time of flight latency

• Coarse grain context “percolation”
- Memory level, in memory synchronization

- Ready contexts move toward processors, pending contexts
towards big memory



Performance Path

• Identify distinct
executable/components entities
within HTMT

– DRAM, SRAM (active, persistent objects)
– SRAM/DRAM (run time)
– SPELL executable code

• SPELL Program - to - SRAM
Object/Runtime interaction (and
SRAM to SRAM)  semantics

– sync ops

– prefix ops, reduction ops
– context triggers
– MALLOC/FREE

• SRAM Runtime - to - SPELL
– Enq/Deq contexts
– exchange jumps

– block context movements

• SRAM - DRAM data permutations
• DRAM active objects execution

– file objects

– searches / traversals / de-references
– compression/decompression operations
– data intensive regular ops



Decision Path

• How does compiler/programmer/runtime decide:
– What runs?
– Where does it run?
– What data is needed to allow it to run?
– When is data needed, and where is it?
– How is data reused?

– What mechanisms are invoked  (or policy) to select/dispatch it?
– How do we “chain” between different runnable units?

• What instrumentation is activated to debug/optimize?



HTMT Percolation Model

Parcel
Invocation

&
Termination

I-Queue
Parcel

Assembly
&

Disassembly

Parcel
Dispatcher

&
Dispenser

T-Queue

A-Queue

D-Queue

C-Buffer

donestart

Re-Use

Split-Phase
Synchronization

to SRAM

SRAM-PIM

CRYOGENIC AREA

Run Time System

DMA to CRAM

DMA to DRAM-PIM



Unresolved Issues
• A language notation to explicitly reflect the different

levels of operations
• Is this a multi-programmed system?
• What is the minimum compiler support?

– E.g.,loop distribution for software pipelining

• How do external computers communicate with the
HTMT file system?
– How to get data on? How to load programs?



Unresolved Issues (2)

• Scheduling policies
– user directed, runtime, compiler, …

• Fault management
• API: How should users view machine?

– What should programmers worry about?
– What is tradeoff space?

• Performance model, instrumentation & debug tools



Task Definitions

• Build the runtime
• Fault discovery and reconfiguration
• Determine critical memory reuse factors
• Develop user level resource management

mechanisms
• Define and implement data motion library
• Develop the file system concept
• Develop a straw man HTMT programming

manual/guide
• Develop performance instrumentation strategy

– metrics, probe methods, tradeoffs, analysis methods



Summary Findings

• Architecture is important
– Bandwidth requirements dominate hardware structures
– Latency management determines runtime resource management

strategy
– Efficient mechanisms for overhead services

• Generality of application workload dependent on
interconnect throughput and response time

• COTS processors will not hide system latency, even
if multithreading is adopted

• More memory than earlier thought may be needed
• MPP problem is very difficult, unclear which direction

to take



Summary Findings (cont)
• COTS clusters will provide safe migration path at

best price-performance but must rely on user
management of all system resources

• Inter-process load balancing too expensive on
clusters

• New formalism required to expose diverse modes of
parallelism

• Compilers can’t ever make all performance decisions;
must be combined with collaborative runtime
software

• Critical-path performance decision tree requires new
internal protocols

• User must describe application properties, not means



Open Issues

• Is network of processor/memories best use of multi-
billion transistor chips

• Is convergence real or only point of inflexion
• Will semiconductor continue to push beyond 0.15

micron; do market costs support it
• Can alternative technology fabrication be

supported/avoided
• Can orders-of-magnitude latency be managed
• What will the computer languages of the Pflops era

look like?
• Processor granularity: fine and many or fat and few



Major Recommendations

• PLEASE! No more workshops
• Sponsor point-design studies for system software

models for MPP and COTS Clustered approaches
– elaborate on functionality of performance critical elements
– establish decision path and interrelationships

• Implement low level HTMT emulator on dedicated
Beowulf-class platform
– modeled functional elements map isomorphically onto physical

computing elements and communications channels
– evaluate percolation and PIM gather-scatter

• HTMT requires phase 3 funding FY00
• Derive definitive CMOS roadmap



Major Recommendations

• Select 2 or 3 applications that
– need petaflops
– have diverse algorithms
– have different memory size and access patterns

• Derive configurations for the MPP and exotic
architectures that would support those systems

• Assess programmability, likely fraction of peak speed
that would be achievable

• Sponsor development of stripped down version of
Linux for MPP and Clustered approach that is robust
and scalable to tens of thousands of nodes

• Reliability must become intrinsic to applications
software


